On a Sparse Shortcut Topology of Artificial Neural Networks
نویسندگان
چکیده
In established network architectures, shortcut connections are often used to take the outputs of earlier layers as additional inputs later layers. Despite extraordinary effectiveness shortcuts, there remain open questions on mechanism and characteristics. For example, why shortcuts powerful? Why do generalize well? this article, we investigate expressivity generalizability a novel sparse topology. First, demonstrate that topology can empower one-neuron-wide deep approximate any univariate continuous function. Then, present width-bounded universal approximator in contrast depth-bounded approximators extend approximation result family equally competent networks. Furthermore, with generalization bound theory, show proposed enjoys excellent generalizability. Finally, corroborate our theoretical analyses by comparing popular including ResNet DenseNet, well-known benchmarks perform saliency map analysis interpret Our work helps understand role suggests further opportunities innovate neural architectures.
منابع مشابه
A Review of Epidemic Forecasting Using Artificial Neural Networks
Background and aims: Since accurate forecasts help inform decisions for preventive health-careintervention and epidemic control, this goal can only be achieved by making use of appropriatetechniques and methodologies. As much as forecast precision is important, methods and modelselection procedures are critical to forecast precision. This study aimed at providing an overview o...
متن کاملGeoid Determination Based on Log Sigmoid Function of Artificial Neural Networks: (A case Study: Iran)
A Back Propagation Artificial Neural Network (BPANN) is a well-known learning algorithmpredicated on a gradient descent method that minimizes the square error involving the networkoutput and the goal of output values. In this study, 261 GPS/Leveling and 8869 gravity intensityvalues of Iran were selected, then the geoid with three methods “ellipsoidal stokes integral”,“BPANN”, and “collocation” ...
متن کاملArtificial neural networks: applications in pain physiology
Artificial neural networks (ANNs) are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the capability of ANN in predicting body behavior in pain-producing situations is evaluated. A three-layer back-propagation ANN is designed using MATLAB software. The inputs include the magnitude of stimulation in pain fibers, touch fibers and cen...
متن کاملArtificial neural networks: applications in pain physiology
Artificial neural networks (ANNs) are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the capability of ANN in predicting body behavior in pain-producing situations is evaluated. A three-layer back-propagation ANN is designed using MATLAB software. The inputs include the magnitude of stimulation in pain fibers, touch fibers and cen...
متن کاملA concatenating framework of shortcut convolutional neural networks
It is well accepted that convolutional neural networks play an important role in learning excellent features for image classification and recognition. However, in tradition they only allow adjacent layers connected, limiting integration of multi-scale information. To further improve their performance, we present a concatenating framework of shortcut convolutional neural networks. This framework...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE transactions on artificial intelligence
سال: 2022
ISSN: ['2691-4581']
DOI: https://doi.org/10.1109/tai.2021.3128132